Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking.
نویسندگان
چکیده
It is a well-established fact that tetraspanin proteins, a large family of integral membrane proteins involved in cell motility, fusion and signalling, associate extensively with one another and with other transmembrane and membrane-proximal proteins. In this study, we present results strongly suggesting that tetraspanin homodimers are fundamental units within larger tetraspanin complexes. Evidence for constitutive CD9 homodimers was obtained using several cell lines, utilizing the following four methods: (1) spontaneous cross-linking via intermolecular disulphide bonds, (2) use of a cysteine-reactive covalent cross-linking agent, (3) use of an amino-reactive covalent cross-linking agent, and (4) covalent cross-linking via direct intermolecular disulphide bridging between unpalmitoylated membrane-proximal cysteine residues. In the last case, incubation of cells with the palmitoylation inhibitor 2-bromopalmitate exposed membrane-proximal cysteine residues, thus effectively promoting 'zero-length' cross-linking to stabilize homodimers. Similar to CD9, other tetraspanins (CD81 and CD151) also showed a tendency to homodimerize. Tetraspanin homodimers were assembled from newly synthesized proteins in the Golgi, as evidenced by cycloheximide and Brefeldin A inhibition studies. Importantly, tetraspanin homodimers appeared on the cell surface and participated in typical 'tetraspanin web' interactions with other proteins. Whereas homodimers were the predominant cross-linked species, we also observed some higher-order complexes (trimers, tetramers or higher) and a much lower level of cross-linking between different tetraspanins (CD81-CD9, CD9-CD151, CD81-CD151). In conclusion, our results strongly suggest that tetraspanin homodimers, formed in the Golgi and present at the cell surface, serve as building blocks for the assembly of larger, multicomponent tetraspanin protein complexes.
منابع مشابه
The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity.
The cancer metastasis suppressor protein KAI1/CD82 is a member of the tetraspanin superfamily. Recent studies have demonstrated that tetraspanins are palmitoylated and that palmitoylation contributes to the organization of tetraspanin webs or tetraspanin-enriched microdomains. However, the effect of palmitoylation on tetraspanin-mediated cellular functions remains obscure. In this study, we fou...
متن کاملINVESTIGATING POST-TRANSLATIONAL MODIFICATIONS OF TETRASPANINS: PALMITOYLATION OF CD81 AND GLYCOSYLATION OF TSPAN-2 by
Members of the protein superfamily of tetraspanins are best defined by a simple structure comprising four transmembrane domains, two extracellular loops of unequal size, and short cytoplasmic regions. Despite their small size, tetraspanins are able to participate in multiple functions, as diverse as B cell activation, cancer metastasis, and viral infection. To compensate for a lack of intrinsic...
متن کاملPalmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology.
Here we demonstrate that multiple tetraspanin (transmembrane 4 superfamily) proteins are palmitoylated, in either the Golgi or a post-Golgi compartment. Using CD151 as a model tetraspanin, we identified and mutated intracellular N-terminal and C-terminal cysteine palmitoylation sites. Simultaneous mutations of C11, C15, C242, and C243 (each to serine) eliminated >90% of CD151 palmitoylation. No...
متن کاملPalmitoylation gates phosphorylation-dependent regulation of BK potassium channels.
Large conductance calcium- and voltage-gated potassium (BK) channels are important regulators of physiological homeostasis and their function is potently modulated by protein kinase A (PKA) phosphorylation. PKA regulates the channel through phosphorylation of residues within the intracellular C terminus of the pore-forming alpha-subunits. However, the molecular mechanism(s) by which phosphoryla...
متن کاملDifferential functions of phospholipid binding and palmitoylation of tumour suppressor EWI2/PGRL.
The tumour suppressor EWI2 associates with tetraspanins and regulates tumour cell movement and proliferation. The short cytoplasmic domain of EWI2 is positively charged; five out of the ten residues of this domain are basic. In the present study we demonstrated that the EWI2 cytoplasmic tail interacts specifically with negatively charged PIPs (phosphatidylinositol phosphates), but not with othe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 377 Pt 2 شماره
صفحات -
تاریخ انتشار 2004